Salicylic Acid Stimulates Antioxidant Defense and Osmolyte Metabolism to Alleviate Oxidative Stress in Watermelons under Excess Boron

Author:

Moustafa-Farag MohamedORCID,Mohamed Heba I.,Mahmoud AhmedORCID,Elkelish AmrORCID,Misra Amarendra N.,Guy Kateta Malangisha,Kamran Muhammad,Ai Shaoying,Zhang Mingfang

Abstract

Boron (B) is a microelement required in vascular plants at a high concentration that produces excess boron and toxicity in many crops. B stress occurs widely and limits plant growth and crop productivity worldwide. Salicylic acid (SA) is an essential hormone in plants and is a phenolic compound. The goal of this work is to explore the role of SA in the alleviation of excess B (10 mg L−1) in watermelon plants at a morphological and biochemical level. Excess boron altered the nutrient concentrations and caused a significant reduction in morphological criteria; chlorophyll a, b, and carotenoids; net photosynthetic rate; and the stomatal conductance and transpiration rate of watermelon seedlings, while intercellular carbon dioxide (CO2) was significantly increased compared to the control plants (0.5 mg L−1 B). Furthermore, excess boron accelerated the generation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2) and induced cellular oxidative injury. The application of exogenous SA significantly increased chlorophyll and carotenoid contents in plants exposed to excess B (10 mg L−1), in line with the role of SA in alleviating chlorosis caused by B stress. Exogenously applied SA promoted photosynthesis and, consequently, biomass production in watermelon seedlings treated with a high level of B (10 mg L−1) by reducing B accumulation, lipid peroxidation, and the generation of H2O2, while significantly increasing levels of the most reactive ROS, OH−. SA also activated antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) and protected the seedlings from an ROS induced cellular burst. In conclusion, SA can be used to alleviate the adverse effects of excess boron.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3