Optimization of salicylic acid concentrations for increasing antioxidant enzymes and bioactive compounds of Agastache rugosa in a plant factory

Author:

Phong Lam Vu,Loi Dao Nhan,Shin JuhyungORCID,Mi Lee Kyeong,Park JongseokORCID

Abstract

Salicylic acid (SA) plays a crucial role as a hormone in plants and belongs to the group of phenolic compounds. Our objective was to determine the optimal concentration of SA for enhancing the production of bioactive compounds in Agastache rugosa plants while maintaining optimal plant growth. The plants underwent SA soaking treatments at different concentrations (i.e., 0, 100, 200, 400, 800, and 1600 μmol mol−1) for 10 min at 7 days after they were transplanted. We observed that elevated levels of SA at 800 and 1600 μmol mol−1 induced oxidative stress, leading to a significant reduction across many plant growth variables, including leaf length, width, number, area, shoot fresh weight (FW), stem FW and length, and whole plant dry weights (DW) compared with that in the control plants. Additionally, the treatment with 1600 μmol mol−1 SA resulted in the lowest values of flower branch number, FW and DW of flowers, and DW of leaf, stem, and root. Conversely, applying 400 μmol mol−1 SA resulted in the greatest increase of chlorophyll (Chl) a and b, total Chl, total flavonoid, total carotenoid, and SPAD values. The photosynthetic rate and stomatal conductance decreased with increased SA concentrations (i.e., 800 and 1600 μmol mol−1). Furthermore, the higher SA treatments (i.e., 400, 800, and 1600 μmol mol−1) enhanced the phenolic contents, and almost all SA treatments increased the antioxidant capacity. The rosmarinic acid content peaked under 200 μmol mol−1 SA treatment. However, under 400 μmol mol−1 SA, tilianin and acacetin contents reached their highest levels. These findings demonstrate that immersing the roots in 200 and 400  μmol mol−1 SA enhances the production of bioactive compounds in hydroponically cultivated A. rugosa without compromising plant growth. Overall, these findings provide valuable insights into the impact of SA on A. rugosa and its potential implications for medicinal plant cultivation and phytochemical production.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3