Mitigating Combined Boron and Salt Stress in Lettuce (Lactuca Sativa L. Semental) through Salicylic Acid-Modified Rice Husk Biochar

Author:

Sahin OzgeORCID,Gunes AydinORCID,Yagcıoglu Kiymet DenizORCID,Kadioglu Yusuf KaganORCID

Abstract

AbstractPurpose: This study thoroughly investigates innovative amendment salicylic acid (SA) modified rice husk biochar (SABC) designed to improve boron (B) and salinity tolerance in lettuce, providing a comprehensive exploration of their potential effects in alleviating stress-induced challenges. Methods: Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy were used for the molecular and chemical characterization of the biochar samples. The treatments consisted of control, 40 mM NaCl plus 20 mg B kg-1 (NaCl + B), and 40 mM NaCl plus 20 mg B kg-1 and 5 g kg-1 SA-modified rice husk biochar (NaCl + B + SABC). Results: Under conditions of salt and B toxicity, SABC treatment significantly prevented the decrease in plant weight induced by stress. SABC reduced the concentrations of B, sodium (Na), and chloride (Cl) in plants, while increasing the concentrations of potassium (K) and silicon (Si). The hydrogen peroxide concentration, which increased as a result of B and salt toxicity, was decreased with SABC. The activities of the antioxidant enzymes superoxide dismutase (SOD) and ascorbate peroxidase (APX) showed a significant increase under stress, but due to the positive effect of SABC in reducing B and salt stress, there was a decrease in the activities of these enzymes. Conclusions: The results obtained from this study indicate that SABC is effective in reducing boron and salt stress. Testing the SABC molecule in different plants and under various stress conditions could provide significant contributions to the stress literature.

Funder

Ankara University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3