Optimizing N Fertilization to Improve Yield, Technological and Nutritional Quality of Tomato Grown in High Fertility Soil Conditions

Author:

Ronga DomenicoORCID,Pentangelo Alfonso,Parisi MarioORCID

Abstract

Processing tomato is the second most important worldwide cash crop, generally produced in high-input systems. However, fruit yield and quality are affected by agronomic management, particularly nitrogen (N) fertilization, whose application to indeterminate growth genotypes for canning has yet to be investigated in depth. Hence, the objective of this work was to assess the effects of different N rates (0, 50, 125, 200, 275, and 350 kg ha−1) on fruit yield and quality characteristics of processing tomato ‘San Marzano’ landrace. The results of our study showed that 125 and 200 kg of N ha−1 are the most appropriate rates in soil with high fertility, ensuring the highest values of marketable yield and brix yield. However, plants fertilized with 125 kg of N ha−1 attained higher values of N efficiency and fruit K and P concentrations than plants fertilized with 200 kg of N ha−1. Our results suggest that overdoses of N supplies negatively affected fruit yield and quality of San Marzano landrace grown in high soil fertility conditions, also reducing the agricultural sustainability. Hence, specific agronomic protocol and extension services are required to optimally manage tomato crop systems.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3