Nanosized Calcium Phosphates as Novel Macronutrient Nano-Fertilizers

Author:

Carmona Francisco J.ORCID,Guagliardi AntoniettaORCID,Masciocchi NorbertoORCID

Abstract

The need for qualitatively and quantitatively enhanced food production, necessary for feeding a progressively increasing World population, requires the adoption of new and sustainable agricultural protocols. Among them, limiting the waste of fertilizers in the environment has become a global target. Nanotechnology can offer the possibility of designing and preparing novel materials alternative to conventional fertilizers, which are more readily absorbed by plant roots and, therefore, enhance nutrient use efficiency. In this context, during the last decade, great attention has been paid to calcium phosphate nanoparticles (CaP), particularly nanocrystalline apatite and amorphous calcium phosphate, as potential macronutrient nano-fertilizers with superior nutrient-use efficiency to their conventional counterparts. Their inherent content in macronutrients, like phosphorus, and gradual solubility in water have been exploited for their use as slow P-nano-fertilizers. Likewise, their large (specific) surfaces, due to their nanometric size, have been functionalized with additional macronutrient-containing species, like urea or nitrate, to generate N-nano-fertilizers with more advantageous nitrogen-releasing profiles. In this regard, several studies report encouraging results on the superior nutrient use efficiency showed by CaP nano-fertilizers in several crops than their conventional counterparts. Based on this, the advances of this topic are reviewed here and critically discussed, with special emphasis on the preparation and characterization approaches employed to synthesize/functionalize the engineered nanoparticles, as well as on their fertilization properties in different crops and in different (soil, foliar, fertigation and hydroponic) conditions. In addition, the remaining challenges in progress toward the real application of CaP as nano-fertilizers, involving several fields (i.e., agronomic or material science sectors), are identified and discussed.

Funder

Fondazione Cariplo

Marie Skłodowska-Curie Individual Fellowship within the European Union H2020 programme

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3