Production of Nanofibers by Electrospinning as Carriers of Agrochemical

Author:

Colín-Orozco Julia1,Colín-Orozco Elena1,Valdivia-Barrientos Ricardo2

Affiliation:

1. Facultad de Ingeniería, Universidad Autónoma del Estado de México, Cerro de Coatepec S/N, Ciudad Universitaria, Toluca 50100, Estado de México, Mexico

2. Departamento de Estudios del Ambiente, Instituto Nacional de Investigaciones Nucleares, Km 36.5 Carretera México-Toluca, La Marquesa, Ocoyoacac 52750, Estado de México, Mexico

Abstract

Agrochemicals can now be protected from harsh environments like pH, light, temperature, and more with the help of a drug-loading system. This has allowed the creation of targeted and continuous release functions for pesticides and fertilizers, as well as the precise application, reduction, and efficiency of agrochemicals. All of these benefits have been made possible by the recent advancements in the field of nanomaterials. A simple procedure known as electrospinning can be used to create nanofibers from natural and synthetic polymers. Nanofibers have come to be recognized as one of the sustainable routes with enormous applicability in different fields. In agriculture, a promising strategy may entail plant protection and growth through the encapsulating of numerous bio-active molecules as pesticides and fertilizers for intelligent administration at the desired places. Owing to their permeability, tiny dimensions, and large surface area, nanofibers can regulate the rate at which agrochemicals are released. This slows down the rate at which the fertilizer dissolves and permits the release of coated fertilizer gradually over time, which is more effectively absorbed by plant roots, as well as the efficiency of pesticides. Thus, modern agriculture requires products and formulations that are more efficient and environmentally friendly than traditional agrochemicals. In addition to highlighting the significance and originality of using nanofibers and offering a brief explanation of the electrospinning technology, the review article’s main goal is to provide a thorough summary of the research leading to breakthroughs in the nanoencapsulation of fertilizers and pesticides.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3