Energy Consumption Modeling for Heterogeneous Internet of Things Wireless Sensor Network Devices: Entire Modes and Operation Cycles Considerations

Author:

Portillo Canek1ORCID,Martinez-Bauset Jorge2ORCID,Pla Vicent2ORCID,Casares-Giner Vicente2ORCID

Affiliation:

1. Facultad de Ingeniería, Universidad Autónoma de Sinaloa, Ciudad Universitaria s/n, Culiacán 80013, Mexico

2. Departament of Communications, Universitat Politècnica de València (Technical University of Valencia), Camí de Vera s/n, 46022 València, Spain

Abstract

Wireless sensor networks (WSNs) and sensing devices are considered to be core components of the Internet of Things (IoT). The performance modeling of IoT–WSN is of key importance to better understand, deploy, and manage this technology. As sensor nodes are battery-constrained, a fundamental issue in WSN is energy consumption. Additional issues also arise in heterogeneous scenarios due to the coexistence of sensor nodes with different features. In these scenarios, the modeling process becomes more challenging as an efficient orchestration of the sensor nodes must be achieved to guarantee a successful operation in terms of medium access, synchronization, and energy conservation. We propose a novel methodology to determine the energy consumed by sensor nodes deploying a recently proposed synchronous duty-cycled MAC protocol named Priority Sink Access MAC (PSA-MAC). We model the operation of a WSN with two classes of sensor devices by a pair of two-dimensional Discrete-Time Markov Chains (2D-DTMC), determine their stationary probability distribution, and propose new expressions to compute the energy consumption based solely on the obtained stationary probability distribution. This new approach is more systematic and accurate than previously proposed ones. The new methodology to determine energy consumption takes into account different specific features of the PSA-MAC protocol as: (i) the synchronization among sensor nodes; (ii) the normal and awake operation cycles to ensure synchronization among sensor nodes and energy conservation; (iii) the two periods that compose a full operation cycle: the data and sleep periods; (iv) two transmission schemes, SPT (single packet transmission) and APT (aggregated packet transmission) (v) the support of multiple sensor node classes; and (vi) the support of different priority assignments per class of sensor nodes. The accuracy of the proposed methodology has been validated by an independent discrete-event-based simulation model, showing that very precise results are obtained.

Funder

MCIN/AEI

European Union

EuroinkaNet

SEP-SES

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3