Energy Aware Software Defined Network Model for Communication of Sensors Deployed in Precision Agriculture

Author:

Ahmed Shakeel1ORCID

Affiliation:

1. Department of Computer Science, College of Computer Sciences and Information Technology, King Faisal University, Al-Ahsa 31982, Saudi Arabia

Abstract

A significant technological transformation has recently occurred in the agriculture sector. Precision agriculture is one among those transformations that largely focus on the acquisition of the sensor data, identifying the insights, and summarizing the information for better decision-making that would enhance the resource usage efficiency, crop yield, and substantial quality of the yield resulting in better profitability, and sustainability of agricultural output. For continuous crop monitoring, the farmlands are connected with various sensors that must be robust in data acquisition and processing. The legibility of such sensors is an exceptionally challenging task, which needs energy-efficient models for handling the lifetime of the sensors. In the current study, the energy-aware software-defined network for precisely selecting the cluster head for communication with the base station and the neighboring low-energy sensors. The cluster head is initially chosen according to energy consumption, data transmission consumption, proximity measures, and latency measures. In the subsequent rounds, the node indexes are updated to select the optimal cluster head. The cluster fitness is assessed in each round to retain the cluster in the subsequent rounds. The network model’s performance is assessed against network lifetime, throughput, and network processing latency. The experimental findings presented here show that the model outperforms the alternatives presented in this study.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3