Boost Precision Agriculture with Unmanned Aerial Vehicle Remote Sensing and Edge Intelligence: A Survey

Author:

Liu Jia,Xiang Jianjian,Jin Yongjun,Liu Renhua,Yan Jining,Wang Lizhe

Abstract

In recent years unmanned aerial vehicles (UAVs) have emerged as a popular and cost-effective technology to capture high spatial and temporal resolution remote sensing (RS) images for a wide range of precision agriculture applications, which can help reduce costs and environmental impacts by providing detailed agricultural information to optimize field practices. Furthermore, deep learning (DL) has been successfully applied in agricultural applications such as weed detection, crop pest and disease detection, etc. as an intelligent tool. However, most DL-based methods place high computation, memory and network demands on resources. Cloud computing can increase processing efficiency with high scalability and low cost, but results in high latency and great pressure on the network bandwidth. The emerging of edge intelligence, although still in the early stages, provides a promising solution for artificial intelligence (AI) applications on intelligent edge devices at the edge of the network close to data sources. These devices are with built-in processors enabling onboard analytics or AI (e.g., UAVs and Internet of Things gateways). Therefore, in this paper, a comprehensive survey on the latest developments of precision agriculture with UAV RS and edge intelligence is conducted for the first time. The major insights observed are as follows: (a) in terms of UAV systems, small or light, fixed-wing or industrial rotor-wing UAVs are widely used in precision agriculture; (b) sensors on UAVs can provide multi-source datasets, and there are only a few public UAV dataset for intelligent precision agriculture, mainly from RGB sensors and a few from multispectral and hyperspectral sensors; (c) DL-based UAV RS methods can be categorized into classification, object detection and segmentation tasks, and convolutional neural network and recurrent neural network are the mostly common used network architectures; (d) cloud computing is a common solution to UAV RS data processing, while edge computing brings the computing close to data sources; (e) edge intelligence is the convergence of artificial intelligence and edge computing, in which model compression especially parameter pruning and quantization is the most important and widely used technique at present, and typical edge resources include central processing units, graphics processing units and field programmable gate arrays.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference248 articles.

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3