Feruloylated Arabinoxylans from Maize Distiller’s Dried Grains with Solubles: Effect of Feruloyl Esterase on their Macromolecular Characteristics, Gelling, and Antioxidant Properties

Author:

Marquez-Escalante Jorge A.ORCID,Carvajal-Millan ElizabethORCID

Abstract

Distiller’s dried grains with solubles (DDGS) are co-products of the maize ethanol industry. DDGS contains feruloylated arabinoxylans (AXs), which can present gelling, antioxidant, and health-promoting effects. However, AXs presenting high ferulic acid (FA) content can exhibit delayed fermentation by the colonic microbiota. Therefore, partial deferuloylation of AXs from DDGS while preserving the polysaccharide gelling and antioxidant properties could add value and favor the sustainable development of bioethanol plants. The aim of this work was to partially deferuloylated AXs from DDGS using feruloyl esterase and to evaluate the polysaccharide macromolecular characteristics, gelling, and antioxidant properties. The AXs presented FA and FA dimer contents of 3.27 and 0.30 µg/mg polysaccharide, respectively, which decreased to 1.26 and 0.20 µg/mg polysaccharide, respectively, in feruloyl esterase-treated AXs (FAXs). The molecular weight and intrinsic viscosity of FAXs were slightly less than those of AXs. The Fourier transform infrared spectroscopy data of AXs and FAXs were similar, confirming that the enzyme did not modify the polysaccharide molecular identity. FAX gels (2% w/v) exhibited a decrease in elasticity by 43% in relation to that of AXs gels. The antioxidant capacity of FAXs was reduced by 32% and 43% (DPPH and ABTS method, respectively), compared with that of AXs. The FAX gelling and antioxidant properties were -comparable to those reported for other AXs in the literature. Feruloyl esterase may offer an interesting approach for the design of functional FAXs as value-added products recovered from DDGS.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3