Strain-Balanced InAs/AlSb Type-II Superlattice Structures Growth on GaSb Substrate by Molecular Beam Epitaxy

Author:

Marchewka Michał1ORCID,Jarosz Dawid12,Ruszała Marta1ORCID,Juś Anna1ORCID,Krzemiński Piotr1,Płoch Dariusz1,Maś Kinga1,Wojnarowska-Nowak Renata1

Affiliation:

1. Center for Microelectronics and Nanotechnology, Institute of Materials Engineering, University of Rzeszów, Al. Rejtana 16, 35-959 Rzeszów, Poland

2. International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland

Abstract

We demonstrate strain-balanced InAs/AlSb type-II superlattices (T2SL) grown on GaSb substrates employing two kinds of interfaces (IFs): AlAs-like IF and InSb-like IF. The structures are obtained by molecular beam epitaxy (MBE) for effective strain management, simplified growth scheme, improved material crystalline quality, and improved surface quality. The minimal strain T2SL versus GaSb substrate can be achieved by a special shutters sequence during MBE growth that leads to the formation of both interfaces. The obtained minimal mismatches of the lattice constants is smaller than that reported in the literature. The in-plane compressive strain of 60-period InAs/AlSb T2SL 7ML/6ML and 6ML/5ML was completely balanced by the applied IFs, which is confirmed by the HRXRD measurements. The results of the Raman spectroscopy (measured along the direction of growth) and surface analyses (AFM and Nomarski microscopy) of the investigated structures are also presented. Such InAs/AlSb T2SL can be used as material for a detector in the MIR range and, e.g., as a bottom n-contact layer as a relaxation region for a tuned interband cascade infrared photodetector.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3