Structure Inheritance in Nanoparticle Ink Direct-Writing Processes and Crack-Free Nano-Copper Interconnects Printed by a Single-Run Approach

Author:

Liu Shujie,Li Yujie,Xing Songling,Liu Lei,Zou Guisheng,Zhang Peng

Abstract

When nanoparticle conductive ink is used for printing interconnects, cracks and pores are common defects that deteriorate the electrical conductivity of the printed circuits. Influences of the ink solvent, the solid fraction of the ink, the pre-printing treatment and the sintering parameters on the interconnect morphology and conductivity were investigated. It was found that the impacts of all these factors coupled with each other throughout the whole procedure, from the pre-printing to the post-printing processes, and led to a structure inheritance effect. An optimum process route was developed for producing crack-free interconnects by a single-run direct-writing approach using home-made nano-copper ink. A weak gel was promoted in the ink before printing in the presence of long-chain polymers and bridging molecules by mechanical agitation. The fully developed gel network prevented the phase separation during ink extrusion and crack formations during drying. With the reducing agents in the ink and slow evaporation of the ink solvent, compact packing and neck joining of copper nanoparticles were obtained after a two-step sintering process. The crack-free interconnects successfully produced have a surface roughness smaller than 1.5 μm and the square resistances as low as 0.01 Ω/□.

Funder

NATURAL SCIENCE FOUNDATION OF SHANDONG PROVICE CHINA

NATIONAL NATURAL SCIENCE FOUNDATION OF CHINA

Publisher

MDPI AG

Subject

General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3