Author:
Liu Shujie,Li Yujie,Xing Songling,Liu Lei,Zou Guisheng,Zhang Peng
Abstract
When nanoparticle conductive ink is used for printing interconnects, cracks and pores are common defects that deteriorate the electrical conductivity of the printed circuits. Influences of the ink solvent, the solid fraction of the ink, the pre-printing treatment and the sintering parameters on the interconnect morphology and conductivity were investigated. It was found that the impacts of all these factors coupled with each other throughout the whole procedure, from the pre-printing to the post-printing processes, and led to a structure inheritance effect. An optimum process route was developed for producing crack-free interconnects by a single-run direct-writing approach using home-made nano-copper ink. A weak gel was promoted in the ink before printing in the presence of long-chain polymers and bridging molecules by mechanical agitation. The fully developed gel network prevented the phase separation during ink extrusion and crack formations during drying. With the reducing agents in the ink and slow evaporation of the ink solvent, compact packing and neck joining of copper nanoparticles were obtained after a two-step sintering process. The crack-free interconnects successfully produced have a surface roughness smaller than 1.5 μm and the square resistances as low as 0.01 Ω/□.
Funder
NATURAL SCIENCE FOUNDATION OF SHANDONG PROVICE CHINA
NATIONAL NATURAL SCIENCE FOUNDATION OF CHINA
Subject
General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献