Aerosol Jet Printing of Strain Sensors for Soft Robotics

Author:

Karipoth Prakash1ORCID,Chandler James H.2ORCID,Lee Jaemin1,Taccola Silvia1ORCID,Macdonald James1,Valdastri Pietro2ORCID,Harris Russell A.1

Affiliation:

1. Future Manufacturing Processes Research Group School of Mechanical Engineering University of Leeds Leeds LS2 9JT UK

2. Science and Technology of Robots in Medicine (STORM) Laboratory School of Electronic and Electrical Engineering University of Leeds Leeds LS2 9JT UK

Abstract

The field of soft robotics is rapidly progressing toward applications including; wearable electronics, prosthetics, and biomedical devices. This is leading to demand for flexible, embedded high‐performance strain sensors to deliver real‐time feedback on the static configurations and dynamic motions of these robotic devices, to ultimately enable the levels of autonomous control and structural monitoring required for intelligent manipulation. Herein, aerosol jet printing (AJP) technology is utilized to generate arbitrary piezoresistive strain sensor layouts on fibrous paper suitable for direct integration into elastomeric soft robots. A custom graphene nanoplatelet ink with a viscosity of around 2.70 cP has been formulated for optimized atomization and patterning of conductive traces via AJP. Single and multilayer printing onto different paper substrates are explored; with the nominal resistance of the printed tracks varying from 272 to 4900 kΩ depending on paper type and number of layers. Maximum gauge factors of 24.2 ± 1.8 and 56.5 ± 4.5 are determined for sensor surfaces under tensile and compression modes, respectively. To demonstrate the possibility for direct integration of this approach for soft robotics, strain sensors are directly printed onto the strain‐limiting layer of a pneumatic soft robotic gripper, to provide continuous feedback of the gripper over curvatures up to 80 m−1.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3