A Review on Extrusion Additive Manufacturing of Pure Copper

Author:

Sakib-Uz-Zaman Chowdhury1,Khondoker Mohammad Abu Hasan1ORCID

Affiliation:

1. Industrial Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada

Abstract

Copper, due to its high thermal and electrical conductivity, is used extensively in many industries such as electronics, aerospace, etc. In the literature, researchers have utilized different additive manufacturing (AM) techniques to fabricate parts with pure copper; however, each technique comes with unique pros and cons. Among others, material extrusion (MEX) is a noteworthy AM technique that offers huge potential to modify the system to be able to print copper parts without a size restriction. For that purpose, copper is mixed with a binder system, which is heated in a melt chamber and then extruded out of a nozzle to deposit the material on a bed. The printed part, known as the green part, then goes through the de-binding and sintering processes to remove all the binding materials and densify the metal parts, respectively. The properties of the final sintered part depend on the processing and post-processing parameters. In this work, nine published articles are identified that focus on the 3D printing of pure copper parts using the MEX AM technique. Depending on the type of feedstock and the feeding mechanism, the MEX AM techniques for pure copper can be broadly categorized into three types: pellet-fed screw-based printing, filament-fed printing, and direct-ink write-based printing. The basic principles of these printing methods, corresponding process parameters, and the required materials and feedstock are discussed in this paper. Later, the physical, electrical, and mechanical properties of the final parts printed from these methods are discussed. Finally, some prospects and challenges related to the shrinkage of the printed copper part during post-processing are also outlined.

Funder

President’s Office, University of Regina

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3