Abstract
The growth of nitride on large-size and low-cost amorphous substrates has attracted considerable attention for applications in large-scale optoelectronic devices. In this paper, we reported the growth of GaN-based light-emitting diodes (LEDs) on amorphous SiO2 substrate with the use of nanorods and graphene buffer layers by metal organic chemical vapor deposition (MOCVD). The effect of different growth parameters on the morphology and vertical-to-lateral aspect ratio of nanorods was discussed by analyzing growth kinetics. Furthermore, we tuned nanorod coalescence to obtain continuous GaN films with a blue-LED structure by adjusting growth conditions. The GaN films exhibited a hexagonal wurtzite structure and aligned c-axis orientation demonstrated by X-ray diffractometer (XRD), Raman, and transmission electron microscopy (TEM) results. Finally, five-pair InGaN/GaN multi-quantum-wells (MQWs) were grown. The photoluminescence (PL) showed an intense emission peak at 475 nm, and the current–voltage (I-V) curve shows a rectifying behavior with a turn-on voltage of 5.7 V. This work provides a promising fabrication method for the large-area and low-cost GaN-based devices on amorphous substrates and opens up the further possibility of nitride integration with Si (100) complementary metal oxide semiconductor (CMOS) electronics.
Funder
National Natural Science Foundation of China
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献