Fast Growth of Multi-Phase MoOx Synthesized by Laser Direct Writing Using Femtosecond Pulses

Author:

Camacho-Lopez SantiagoORCID,Cano-Lara Miroslava,Camacho-Lopez Marco

Abstract

Molybdenum oxide is an attractive material for application in several technology fields such as sensors, displays, and batteries, among many others. In this work, we present a reliable laser direct writing (LDW) method for synthesizing multi-phase molybdenum oxide (MoOx) on a single processing step. We use femtosecond laser pulses to produce up to five distinct crystalline phases of molybdenum oxide at once. We demonstrate how the laser irradiation conditions determine the MoOx stoichiometry, phase, and morphology. We show that by conveniently adjusting either the per-pulse laser fluence or the exposure time, MoOx can be obtained in nano or micro-structured form. We found that this ultrashort pulse laser processing method allows for the formation of unusual MoOx phases such as o-Mo18O52, which is rarely reported in the literature. In addition, it is possible to synthesize other sub-stoichiometric molybdenum oxide phases such as o-Mo4O11 and m-Mo8O23 all at atmospheric air conditions, with no need for demanding oxygen pressure precautions.

Funder

CONACyT

Air Force Office of Scientific Research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3