Effect of Strains and V-Shaped Pit Structures on the Performance of GaN-Based Light-Emitting Diodes

Author:

Chen Shuo-WeiORCID,Chang Chia-Jui,Lu Tien-Chang

Abstract

Strains and V-shaped pits are essential factors for determining the efficiency of GaN-based light-emitting diodes (LEDs). In this study, we systematically analyzed GaN LED structures on patterned sapphire substrates (PSSs) with two types of growth temperature employed for prestrained layers and three different thickness of n-type GaN layers by using cathodoluminescence (CL), microphotoluminescence (PL), and depth-resolved confocal Raman spectroscopy. The results indicated that V-pits formation situation can be analyzed using CL. From the emission peak intensity ratio of prestrained layers and multiple quantum wells (MQWs) in the CL spectrum, information regarding strain relaxation between prestrained layers and MQWs was determined. Furthermore, micro-PL and depth-resolved confocal Raman spectroscopy were employed to validate the results obtained from CL measurements. The growth conditions of prestrained layers played a dominant role in the determination of LED performance. The benefit of the thick layer of n-GaN was the strain reduction, which was counteracted by an increase in light absorption in thick n-type doped layers. Consequently, the most satisfactory LED performance was observed in a structure with relatively lower growth temperature of prestrained layers that exhibited larger V-pits, leading to higher strain relaxation and thinner n-type GaN layers, which prevent light absorption caused by n-type GaN layers.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3