Green Synthesis, SC-XRD, Non-Covalent Interactive Potential and Electronic Communication via DFT Exploration of Pyridine-Based Hydrazone

Author:

Ali Akbar,Khalid Muhammad,Abid Saba,Tahir MuhammadORCID,Iqbal Javed,Ashfaq Muhammad,Kanwal Fariha,Lu Changrui,Rehman MuhammadORCID

Abstract

Ultrasound-based synthesis at room temperature produces valuable compounds greener and safer than most other methods. This study presents the sonochemical fabrication and characterization of a pyridine-based halogenated hydrazone, (E)-2-((6-chloropyridin-2-yl)oxy)-N′-(2-hydroxybenzylidene) acetohydrazide (HBPAH). The NMR spectroscopic technique was used to determine the structure, while SC-XRD confirmed its crystalline nature. Our structural studies revealed that strong, inter-molecular attractive forces stabilize this crystalline organic compound. Moreover, the compound was optimized at the B3LYP/6-311G(d,p) level using the Crystallographic Information File (CIF). Natural bonding orbital (NBO) and natural population analysis (NPA) were performed at the same level using optimized geometry. Time-dependent density functional theory (DFT) was performed at the B3LYP/6-311G (d,p) method to calculate the frontier molecular orbitals (FMOs) and molecular electrostatic potential (MEP). The global reactivity descriptors were determined using HOMO and LUMO energy gaps. Theoretical calculations based on the Quantum Theory of Atoms in Molecules (QT-AIM) and Hirshfeld analyses identified the non-covalent and covalent interactions of the HBPAH compound. Consequently, QT-AIM and Hirshfeld analyses agree with experimental results.

Funder

Shanghai Science and Technology Committee

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3