Exploring the Chemical Reactivity, Molecular Docking, Molecular Dynamic Simulation and ADMET Properties of a Tetrahydrothienopyridine Derivative Using Computational Methods

Author:

Bakheit Ahmed H.1ORCID,Attwa Mohamed W.1ORCID,Kadi Adnan A.1ORCID,Ghabbour Hazem A.2,Alkahtani Hamad M.1ORCID

Affiliation:

1. Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia

2. School of Health and Biomedical Sciences, RMIT University, Melbourne 3083, Australia

Abstract

This study investigates the crystal structure, physicochemical properties, and pharmacokinetic profile of Ethyl 2-amino-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate (EAMT) as a potential therapeutic agent. The crystal structure was analyzed using Hirshfeld surface analysis in conjunction with the quantum theory of atoms in molecules (QT-AIM). Non-covalent interactions were evaluated through reduced-density gradient reduction, revealing that the EAMT crystal is stabilized by hydrogen bonds between EAMT molecules in the crystal and between EAMT molecules and water molecules. The molecular electrostatic nature of interactions was examined using MESP, while global and local descriptors were calculated to assess the compound’s reactivity. Molecular docking with the Adenosine A1 receptor was performed and validated through a 50 ns molecular dynamics simulation (MDS). Results suggest that EAMT influences protein structure, potentially stabilizing specific secondary structure elements. The compactness analysis showed a slightly more compact protein conformation and a marginally increased solvent exposure in the presence of the EAMT ligand, as indicated by Rg and SASA values. The total binding free energy (ΔG total) was determined to be −114.56 kcal/mol. ADMET predictions demonstrated EAMT’s compliance with Lipinski’s and Pfizer’s rule of five, indicating good oral availability. The compound may exhibit low-potency endocrine activity. In conclusion, EAMT presents potential as a therapeutic candidate, warranting further exploration of its molecular interactions, pharmacokinetics, and potential safety concerns.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3