A Hybrid Mapping Method with Position and Stiffness for Manipulator Teleoperation

Author:

Jiang ,Ni ,Yang ,Li ,Yang ,Liu

Abstract

Transferring versatile skills of human behavior to teleoperate manipulators to execute tasks with large uncertainties is challenging in robotics. This paper proposes a hybrid mapping method with position and stiffness for manipulator teleoperation through the exoskeleton device combining with the surface electromyography (sEMG) sensors. Firstly, according to the redefinition of robot workspace, the fixed scale mapping in free space and virtual impedance mapping in fine space are presented for position teleoperation. Secondly, the stiffness at the human arm endpoint is predicted and classified into three levels based on the K nearest neighbor (KNN) and XGBoost, and the stiffness mapping method is utilized to regulate the stiffness behavior of manipulator. Finally, the proposed method is demonstrated in three complementary experiments, namely the trajectory tracking in free space, the obstacle avoidance in fine space and the human robot interaction in contact space, which illustrate the effectiveness of the method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference25 articles.

1. A brief history of DLR’s space telerobotics and force feedback teleoperation;Artigas;Acta Polytech. Hung.,2016

2. Robotics for Seabed Teleoperation: Part-1–Conception and Practical Implementation of a Hybrid Seabed Robot

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3