A New Short Term Electrical Load Forecasting by Type-2 Fuzzy Neural Networks

Author:

Tian Man-Wen,Alattas KhalidORCID,El-Sousy Fayez,Alanazi AbdullahORCID,Mohammadzadeh ArdashirORCID,Tavoosi JafarORCID,Mobayen SalehORCID,Skruch PawełORCID

Abstract

In this study, we present a new approach for load forecasting (LF) using a recurrent fuzzy neural network (RFNN) for Kermanshah City. Imagine if there is a need for electricity in a region in the coming years, we will have to build a power plant or reinforce transmission lines, so this will be resolved if accurate forecasts are made at the right time. Furthermore, suppose that by building distributed generation plants, and predicting future consumption, we can conclude that production will be more than consumption, so we will seek to export energy to other countries and make decisions on this. In this paper, a novel combination of neural networks (NNs) and type-2 fuzzy systems (T2FSs) is used for load forecasting. Adding feedback to the fuzzy neural network can also benefit from past moments. This feedback structure is called a recurrent fuzzy neural network. In this paper, Kermanshah urban electrical load data is used. The simulation results prove the efficiency of this method for forecasting the electrical load. We found that we can accurately predict the electrical load of the city for the next day with 98% accuracy. The accuracy index is the evaluation of mean absolute percentage error (MAPE). The main contributions are: (1) Introducing a new fuzzy neural network. (2) Improving and increasing the accuracy of forecasting using the proposed fuzzy neural network. (3) Taking data from a specific area (Kermanshah City) and forecasting the electrical load for that area. (4) The ability to enter new data without calculations from the beginning.

Funder

Taif University

Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering of the AGH University of Science and Technology, Cracow, Poland

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3