The Impact of the Selection of Exogenous Variables in the ANFIS Model on the Results of the Daily Load Forecast in the Power Company

Author:

Sowinski JanuszORCID

Abstract

Forecasting of daily loads is crucial for the Distribution System Operators (DSO). Contemporary short-term load forecasting models (STLF) are very well recognized and described in numerous articles. One of such models is the Adaptive Neuro-Fuzzy Inference System (ANFIS), which requires a large set of historical data. A well-recognized issue both for the ANFIS and other daily load forecasting models is the selection of exogenous variables. This article attempts to verify the statement that an appropriate selection of exogenous variables of the ANFIS model affects the accuracy of the forecasts obtained ex post. This proposal seems to be a return to the roots of the Polish econometrics school and the use of the Hellwig method to select exogenous variables of the ANFIS model. In this context, it is also worth asking whether the use of the Hellwig method in conjunction with the ANFIS model makes it possible to investigate the significance of weather variables on the profile of the daily load in an energy company. The functioning of the ANFIS model was tested for some consumers exhibiting high load randomness located within the area under supervision of the examined power company. The load curves featuring seasonal variability and weekly similarity are suitable for forecasting with the ANFIS model. The Hellwig method has been used to select exogenous variables in the ANFIS model. The optimal set of variables has been determined on the basis of integral indicators of information capacity H. Including an additional variable, i.e., air temperature, has also been taken into consideration. Some results of ex post daily load forecast are presented.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference51 articles.

1. Electric Power Systems: A Conceptual Introduction;Meier,2006

2. Forecasting Methods Supporting the Operator of Transmission System—Chosen Issues;Popławski;Przegląd Elektrotechniczny,2010

3. Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach;Weron,2006

4. Models for mid-term electricity demand forecasting incorporating weather influences

5. Using weather ensemble predictions in electricity demand forecasting

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3