Abstract
Forecasting of daily loads is crucial for the Distribution System Operators (DSO). Contemporary short-term load forecasting models (STLF) are very well recognized and described in numerous articles. One of such models is the Adaptive Neuro-Fuzzy Inference System (ANFIS), which requires a large set of historical data. A well-recognized issue both for the ANFIS and other daily load forecasting models is the selection of exogenous variables. This article attempts to verify the statement that an appropriate selection of exogenous variables of the ANFIS model affects the accuracy of the forecasts obtained ex post. This proposal seems to be a return to the roots of the Polish econometrics school and the use of the Hellwig method to select exogenous variables of the ANFIS model. In this context, it is also worth asking whether the use of the Hellwig method in conjunction with the ANFIS model makes it possible to investigate the significance of weather variables on the profile of the daily load in an energy company. The functioning of the ANFIS model was tested for some consumers exhibiting high load randomness located within the area under supervision of the examined power company. The load curves featuring seasonal variability and weekly similarity are suitable for forecasting with the ANFIS model. The Hellwig method has been used to select exogenous variables in the ANFIS model. The optimal set of variables has been determined on the basis of integral indicators of information capacity H. Including an additional variable, i.e., air temperature, has also been taken into consideration. Some results of ex post daily load forecast are presented.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference51 articles.
1. Electric Power Systems: A Conceptual Introduction;Meier,2006
2. Forecasting Methods Supporting the Operator of Transmission System—Chosen Issues;Popławski;Przegląd Elektrotechniczny,2010
3. Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach;Weron,2006
4. Models for mid-term electricity demand forecasting incorporating weather influences
5. Using weather ensemble predictions in electricity demand forecasting
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献