Publisher
Springer Nature Switzerland
Reference11 articles.
1. Luffman, J.: Solar power forecasting in Ukraine (2020). https://solcast.com/solar-forecasting/ukraine-solar-irradiance-data-and-power-forecasts/
2. Sowinski, J. The impact of the selection of exogenous variables in the ANFIS model on the results of the daily load forecast in the power company. Energies 14, 345 (2021). https://doi.org/10.3390/en14020345
3. Voyant, C., Notton, G., Kalogirou, S., Nivet, M.L., Paoli, C., Motte, F., et al.: Machine learning methods for solar radiation forecasting: a review. Renewable Energy 105(Supplement C), 569–582 (2017). https://doi.org/10.1016/j.renene.2016.12.095
4. Meinshausen, M.: Quantile regression forests. J. Mach. Learn. Res. 7, 983–999 (2006)
5. Muhammad Ehsan, R., Simon, S.P., Venkateswaran, P.R.: Day-ahead forecasting of solar photovoltaic output power using multilayer perceptron. Neural Comput. Appl. 1–12. Springer (2016)