Short-Term Electric Load Forecasting Based on Variational Mode Decomposition and Grey Wolf Optimization

Author:

Zhou Mengran,Hu Tianyu,Bian KaiORCID,Lai WenhaoORCID,Hu FengORCID,Hamrani Oumaima,Zhu Ziwei

Abstract

Short-term electric load forecasting plays a significant role in the safe and stable operation of the power system and power market transactions. In recent years, with the development of new energy sources, more and more sources have been integrated into the grid. This has posed a serious challenge to short-term electric load forecasting. Focusing on load series with non-linear and time-varying characteristics, an approach to short-term electric load forecasting using a “decomposition and ensemble” framework is proposed in this paper. The method is verified using hourly load data from Oslo and the surrounding areas of Norway. First, the load series is decomposed into five components by variational mode decomposition (VMD). Second, a support vector regression (SVR) forecasting model is established for the five components to predict the electric load components, and the grey wolf optimization (GWO) algorithm is used to optimize the cost and gamma parameters of SVR. Finally, the predicted values of the five components are superimposed to obtain the final electric load forecasting results. In this paper, the proposed method is compared with GWO-SVR without modal decomposition and using empirical mode decomposition (EMD) to test the impact of VMD on prediction. This paper also compares the proposed method with the SVR model using VMD and other optimization algorithms. The four evaluation indexes of the proposed method are optimal: MAE is 71.65 MW, MAPE is 1.41%, MSE is 10,461.32, and R2 is 0.9834. This indicates that the proposed method has a good application prospect for short-term electric load forecasting.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3