A novel ensemble deep reinforcement learning model for short‐term load forecasting based on Q‐learning dynamic model selection

Author:

He Xin1,Zhao Wenlu1ORCID,Zhang Licheng2,Zhang Qiushi3,Li Xinyu1

Affiliation:

1. School of Mathematics and Systems Science Shenyang Normal University Shenyang China

2. School of Municipal and Environmental Engineering Shenyang Jianzhu University Shenyang China

3. Shenyang Action Automation Control Co., Ltd. Shenyang China

Abstract

AbstractShort‐term load forecasting is critical for power system planning and operations, and ensemble forecasting methods for electricity loads have been shown to be effective in obtaining accurate forecasts. However, the weights in ensemble prediction models are usually preset based on the overall performance after training, which prevents the model from adapting in the face of different scenarios, limiting the improvement of prediction performance. In order to improve the accurateness and validity of the ensemble prediction method further, this paper proposes an ensemble deep reinforcement learning approach using Q‐learning dynamic weight assignment to consider local behaviours caused by changes in the external environment. Firstly, the variational mode decomposition is used to reduce the non‐stationarity of the original data by decomposing the load sequence. Then, the recurrent neural network (RNN), long short‐term memory (LSTM), and gated recurrent unit (GRU) are selected as the basic power load predictors. Finally, the optimal weights are ensembled for the three sub‐predictors by the optimal weights generated using the Q‐learning algorithm, and the final results are obtained by combining their respective predictions. The results show that the forecasting capability of the proposed method outperforms all sub‐models and several baseline ensemble forecasting methods.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3