Multi-Layer Feature Based Shoeprint Verification Algorithm for Camera Sensor Images

Author:

Wang XinnianORCID,Wu Yanjun,Zhang Tao

Abstract

As a kind of forensic evidence, shoeprints have been treated as important as fingerprint and DNA evidence in forensic investigations. Shoeprint verification is used to determine whether two shoeprints could, or could not, have been made by the same shoe. Successful shoeprint verification has tremendous evidentiary value, and the result can link a suspect to a crime, or even link crime scenes to each other. In forensic practice, shoeprint verification is manually performed by forensic experts; however, it is too dependent on experts’ experience. This is a meaningful and challenging problem, and there are few attempts to tackle it in the literatures. In this paper, we propose a multi-layer feature-based method to conduct shoeprint verification automatically. Firstly, we extracted multi-layer features; and then conducted multi-layer feature matching and calculated the total similarity score. Finally, we drew a verification conclusion according to the total similarity score. We conducted extensive experiments to evaluate the effectiveness of the proposed method on two shoeprint datasets. Experimental results showed that the proposed method achieved good performance with an equal error rate (EER) of 3.2% on the MUES-SV1KR2R dataset and an EER of 10.9% on the MUES-SV2HS2S dataset.

Funder

The Ministry of Public Security of China Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference37 articles.

1. Footwear Impression Evidence: Detection, Recovery, and Examination;Bodziak,2000

2. Forensic shoe-print identification: A brief survey;Rida;arXiv,2019

3. A novel technique for automatic shoeprint image retrieval

4. Alignment of core point for shoeprint analysis and retrieval

5. Automatic Shoeprint Retrieval Algorithm for Real Crime Scenes

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3