Prediction of Gas Emission in the Working Face Based on LASSO-WOA-XGBoost

Author:

Song Weihua1,Han Xiaowei1,Qi Jifei1

Affiliation:

1. College of Mining, Liaoning Technical University, Fuxin 123000, China

Abstract

In order to improve the prediction accuracy of gas emission in the mining face, a method combining least absolute value convergence and selection operator (LASSO), whale optimization algorithm (WOA), and extreme gradient boosting (XGBoost) was proposed, along with the LASSO-WOA-XGBoost gas emission prediction model. Aiming at the monitoring data of gas emission in Qianjiaying mine, LASSO is used to perform feature selection on 13 factors that affect gas emission, and 9 factors that have a high impact on gas emission are screened out. The three main parameters of n_estimators, learning_rate, and max_depth in XGBoost are optimized through WOA, which solves the problem of difficult parameter adjustment due to the large number of parameters in the XGBoost algorithm and improves the prediction effect of the XGBoost algorithm. "When comparing PCA-BP, PCA-SVM, LASSO-XGBoost, and PCA-WOA-XGBoost prediction models, the results indicate that utilizing LASSO for feature selection is more effective in enhancing model prediction accuracy than employing principal component analysis (PCA) for dimensionality reduction." The average absolute error of the LASSO-WOA-XGBoost model is 0.1775, and the root mean square error is 0.2697, which is the same as other models. Compared with the four prediction models, the LASSO-WOA-XGBoost prediction model reduced the mean absolute error by 7.43%, 8.81%, 4.16%, and 9.92%, respectively, and the root mean square error was reduced by 0.24%, 1.13%, 5.81%, and 8.78%. It provides a new method for predicting the gas emission from the mining face in actual mine production.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference31 articles.

1. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry;Liu;J. China Coal Soc.,2021

2. Prediction and evaluation of mine gas;Luo;China Saf. Sci. J.,1994

3. Predicting the Amount of Gas Gushed from Mine by Model GM(1,1) of Gray System Theory;Liu;China Saf. Sci. J.,2000

4. Present Situation and Development Trend of Gas Emission Prediction Technology in Coal Face;Wang;Sci. Technol. Eng.,2019

5. Gas emission quantity prediction of working face based on principal component regression analysis method;Lv;J. China Coal Soc.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3