Survey on the investigation of forensic crime scene evidence

Author:

Johnson Jyothi1,Chitra R.2

Affiliation:

1. Department of Computer Science and Engineering, Noorul Islam Centre for Higher Education, Thuckalay, Tamil Nadu-629180, India

2. Department of Computer Science & Engineering, Karunya Institute of Technolgy and Sciences, Karunya Nagar, Coimbatore, Tamil Nadu-641114, India

Abstract

Determining and proving that a specific person or several persons may or may not be there at the Crime Scene (CS) in every criminal investigation are vital. Thus, in the law enforcement community, more often the physical evidence is collected, preserved, and analyzed. The accused cannot be predicted by normal people or judge just by looking at the evidence obtained at the analysis phase. So, research studies were undertaken on automated recognition as well as retrieval system aimed at forensic Crime Scene Investigation (CSI). A survey on the investigation of forensic CS evidence is depicted here. The main focus is rendered on the computer-centered automated investigation system. The latest research on the different evidence-centered Forensic Investigation (FI), such as the face, Finger-Print (FP), shoeprint, together with other Foot-Wear (FW) impressions, Machine Learning (ML) algorithm-centered FI, ML-centered pattern recognition, features of disparate evidence in forensic CSI, and various matching technique-centered FI, is surveyed here. Finally, centered on the accuracy and other two metrics, the methods’ performance for CSI is compared. Out of all the other methods, OLBP + LSSVM produced better results for precision and recall followed by CLSTM. In terms of accuracy, CLSTM produced better results than any other method.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Modeling and Simulation,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3