Automatic Retrieval of Shoeprints Using Modified Multi-Block Local Binary Pattern

Author:

Alizadeh Sayyad,Jond Hossein B.ORCID,Nabiyev Vasif V.,Kose Cemal

Abstract

A shoeprint is a valuable clue found at a crime scene and plays a significant role in forensic investigations. In this paper, in order to maintain the local features of a shoeprint image and place a pattern in a block, a novel automatic method was proposed, referred to as Modified Multi-Block Local Binary Pattern (MMB-LBP). In this method, shoeprint images are divided into blocks according to two different models. The histograms of all blocks of the first and second models are separately measured and stored in the first and second feature matrices, respectively. The performance evaluations of the proposed method were carried out by comparing with state-of-the-art methods. The evaluation criteria are the successful retrieval rates obtained using the best match score at rank one and cumulative match score for the first five matches. The comparison results indicated that the proposed method performs better than other methods, in terms of retrieval of complete and incomplete shoeprints. That is, the proposed method was able to retrieve 97.63% of complete shoeprints, 96.5% of incomplete toe shoeprints, and 91.18% of incomplete heel shoeprints. Moreover, the experiments showed that the proposed method is significantly resistant to the rotation, salt and pepper noise, and Gaussian white noise distortions in comparison with the other methods.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference57 articles.

1. The Analysis of Dust Traces. Part I

2. Forensic Examination of Hair;Robertson,2002

3. Fingerprint Based Gender Identification using frequency domain analysis;Kaur;Int. J. Adv. Eng. Technol.,2012

4. Forensic DNA Evidence Interpretation;Buckleton,2016

5. Interpreting Evidence: Evaluating Forensic Science in the Courtroom;Robertson,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3