Abstract
The electroencephalogram (EEG) can reflect brain activity and contains abundant information of different anesthetic states of the brain. It has been widely used for monitoring depth of anesthesia (DoA). In this study, we propose a method that combines multiple EEG-based features with artificial neural network (ANN) to assess the DoA. Multiple EEG-based features can express the states of the brain more comprehensively during anesthesia. First, four parameters including permutation entropy, 95% spectral edge frequency, BetaRatio and SynchFastSlow were extracted from the EEG signal. Then, the four parameters were set as the inputs to an ANN which used bispectral index (BIS) as the reference output. 16 patient datasets during propofol anesthesia were used to evaluate this method. The results indicated that the accuracies of detecting each state were 86.4% (awake), 73.6% (light anesthesia), 84.4% (general anesthesia), and 14% (deep anesthesia). The correlation coefficient between BIS and the index of this method was 0.892 ( p < 0.001 ). The results showed that the proposed method could well distinguish between awake and other anesthesia states. This method is promising and feasible for a monitoring system to assess the DoA.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献