SQI-DOANet: electroencephalogram-based deep neural network for estimating signal quality index and depth of anaesthesia

Author:

Yu RuiORCID,Zhou ZhuhuangORCID,Xu MengORCID,Gao MengORCID,Zhu MeitongORCID,Wu Shuicai,Gao Xiaorong,Bin GuangyuORCID

Abstract

Abstract Objective. Monitoring the depth of anaesthesia (DOA) during surgery is of critical importance. However, during surgery electroencephalography (EEG) is usually subject to various disturbances that affect the accuracy of DOA. Therefore, accurately estimating noise in EEG and reliably assessing DOA remains an important challenge. In this paper, we proposed a signal quality index (SQI) network (SQINet) for assessing the EEG signal quality and a DOA network (DOANet) for analyzing EEG signals to precisely estimate DOA. The two networks are termed SQI-DOANet. Approach. The SQINet contained a shallow convolutional neural network to quickly determine the quality of the EEG signal. The DOANet comprised a feature extraction module for extracting features, a dual attention module for fusing multi-channel and multi-scale information, and a gated multilayer perceptron module for extracting temporal information. The performance of the SQI-DOANet model was validated by training and testing the model on the large VitalDB database, with the bispectral index (BIS) as the reference standard. Main results. The proposed DOANet yielded a Pearson correlation coefficient with the BIS score of 0.88 in the five-fold cross-validation, with a mean absolute error (MAE) of 4.81. The mean Pearson correlation coefficient of SQI-DOANet with the BIS score in the five-fold cross-validation was 0.82, with an MAE of 5.66. Significance. The SQI-DOANet model outperformed three compared methods. The proposed SQI-DOANet may be used as a new deep learning method for DOA estimation. The code of the SQI-DOANet will be made available publicly at https://github.com/YuRui8879/SQI-DOANet.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3