Equipment Health Assessment: Time Series Analysis for Wind Turbine Performance

Author:

Backhus Jana1,Rao Aniruddha Rajendra1ORCID,Venkatraman Chandrasekar1,Padmanabhan Abhishek2,Kumar A. Vinoth3,Gupta Chetan1

Affiliation:

1. Industrial AI Lab, R&D, Hitachi America, Ltd., Santa Clara, CA 95054, USA

2. Centre of Excellence in Energy Sciences, Atria University, Bengaluru 560024, India

3. Atria Brindavan Power Private Limited, Bangalore 560025, India

Abstract

In this study, we leverage SCADA data from diverse wind turbines to predict power output, employing advanced time series methods, specifically Functional Neural Networks (FNN) and Long Short-Term Memory (LSTM) networks. A key innovation lies in the ensemble of FNN and LSTM models, capitalizing on their collective learning. This ensemble approach outperforms individual models, ensuring stable and accurate power output predictions. Additionally, machine learning techniques are applied to detect wind turbine performance deterioration, enabling proactive maintenance strategies and health assessment. Crucially, our analysis reveals the uniqueness of each wind turbine, necessitating tailored models for optimal predictions. These insight underscores the importance of providing automatized customization for different turbines to keep human modeling effort low. Importantly, the methodologies developed in this analysis are not limited to wind turbines; they can be extended to predict and optimize performance in various machinery, highlighting the versatility and applicability of our research across diverse industrial contexts.

Publisher

MDPI AG

Reference47 articles.

1. Climate change impacts on renewable energy supply;Gernaat;Nat. Clim. Change,2021

2. The impact of climate change and variability on the generation of electrical power;Koch;Meteorol. Z.,2015

3. Wind-Turbine and Wind-Farm Flows: A Review;Bastankhah;Bound.-Layer Meteorol.,2019

4. Climate change impacts on wind power generation;Pryor;Nat. Rev. Earth Environ.,2020

5. Grand challenges in the science of wind energy;Veers;Science,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3