Effects of Pulsed Electric Field on Oil Extraction Rate and Tocopherol in Peony Seeds

Author:

Xu Wei1,Liu Jianfei2,Tian Ye3,Liu Junchi3,Chang Zhengshi3ORCID

Affiliation:

1. School of Biological and Environmental Engineering, Xi’an University, Xi’an 710065, China

2. CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

3. School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Peony seed oil, known for its high nutritional value and low production yield, has become a crucial component in high-quality health products. Consequently, enhancing the extraction efficiency of peony seed oil has become an industry objective. Pulse electric field (PEF) technology, as a non-thermal extraction method, has shown promising advancements in improving plant oil yield by enhancing cell permeability. In this study, we designed a static parallel plate PEF treatment unit to process peony seed particles. By manipulating pulse voltage parameters, we investigated the effects of particle size and PEF strength on the oil yield. We also analyzed and evaluated tocopherol in the oil before and after treatment. The results demonstrated that PEF significantly increased the oil yield. Both treated and control groups exhibited gradually increased oil yields with decreasing particle size until reaching saturation at a certain particle size. Increasing voltage frequency did not have a significant impact on the oil yield; however, increasing voltage amplitude resulted in an optimal point for maximum oil yield. Analysis of oil composition indicated that PEF appropriately increased tocopherol content. These findings provide a foundation for further optimization of PEF parameters to assist in extracting peony seed oil and facilitate its industrial application.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3