Multi-Dimension and Multi-Channel Seismic-Ionospheric Coupling: Case Study of Mw 8.8 Concepcion Quake on 27 February 2010

Author:

Shi Kunpeng,Guo Jinyun,Zhang Yongming,Li WangORCID,Kong Qiaoli,Yu Teng

Abstract

GPS radio occultation (RO) technology can fully describe the subtle structure of the ionosphere. This paper discusses the dynamic abnormity observed by the RO data from the Constellation Observing System for Meteorology Ionosphere and Climate (FORMOSAT-3/COSMIC) before the great earthquake case in Concepcion, Chile (27 February 2010, Mw 8.8). Traditional ground-based GPS monitoring was considered as the external conditions and references to the excitation response. Using kriging interpolation, the global Nmf2 map (GNM) was first constructed to study the ionosphere deviation from the normal state. Successively, the ionosphere abnormality in the F2 region (Nmf2), vertical structure (RO profiles), and multiple heights (electron density) of traveling are unfolded. The Nmf2 disturbances in the possibility of seismic influences were excluded from non-seismic noise factors, including the external input (e.g., space weather activity, 15 February) and meteorological events (e.g., lower atmospheric forcing in quiet periods). However, the results show that there were apparent local Nmf2 perturbations for up to 5 h in the epicenter area on 21 and 25 February. The disturbances of the RO profiles and the interaction of other layers of the ionosphere implied the fluctuation signals of prominent long-wavelength fluctuations >50 km in the F layer. The ionospheric fluctuates wildly, and these wave signals considered as the trace of gravity wave propagating upward are mainly distributed at the elevation of 200–300 km. The simultaneous reaction of GNSS TEC further evidenced the potential possibility of acoustic gravity by the COSMIC RO profiles, reflecting the compounding couplings of seismo-ionosphere effects. In terms of the presentation of VLF radiation noise and the aerosol ion clusters, the electromagnetic and chemical channels have been previously completed by DEMETER and Terra/Aqua satellites. These findings implied the great potential of the FORMOSAT-7/COSMIC-2 system (now in the testing phase), with ~5000 soundings to investigate the subtle atmospheric stratification.

Funder

National Natural Science Foundation of China

the Autonomous and Controllable Special Project for Surveying and Mapping of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3