Pre-Earthquake Ionospheric Perturbation Identification Using CSES Data via Transfer Learning

Author:

Xiong Pan,Long Cheng,Zhou Huiyu,Battiston Roberto,De Santis Angelo,Ouzounov Dimitar,Zhang Xuemin,Shen Xuhui

Abstract

During the lithospheric buildup to an earthquake, complex physical changes occur within the earthquake hypocenter. Data pertaining to the changes in the ionosphere may be obtained by satellites, and the analysis of data anomalies can help identify earthquake precursors. In this paper, we present a deep-learning model, SeqNetQuake, that uses data from the first China Seismo-Electromagnetic Satellite (CSES) to identify ionospheric perturbations prior to earthquakes. SeqNetQuake achieves the best performance [F-measure (F1) = 0.6792 and Matthews correlation coefficient (MCC) = 0.427] when directly trained on the CSES dataset with a spatial window centered on the earthquake epicenter with the Dobrovolsky radius and an input sequence length of 20 consecutive observations during night time. We further explore a transferring learning approach, which initially trains the model with the larger Electro-Magnetic Emissions Transmitted from the Earthquake Regions (DEMETER) dataset, and then tunes the model with the CSES dataset. The transfer-learning performance is substantially higher than that of direct learning, yielding a 12% improvement in the F1 score and a 29% improvement in the MCC value. Moreover, we compare the proposed model SeqNetQuake with other five benchmarking classifiers on an independent test set, which shows that SeqNetQuake demonstrates a 64.2% improvement in MCC and approximately a 24.5% improvement in the F1 score over the second-best convolutional neural network model. SeqNetSquake achieves significant improvement in identifying pre-earthquake ionospheric perturbation and improves the performance of earthquake prediction using the CSES data.

Funder

National Key Research and Development Program of China

Agenzia Spaziale Italiana

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference80 articles.

1. Tensorflow: A System for Large-Scale Machine Learning;Abadi,2016

2. Enhanced ULF Radiation Observed by DEMETER Two Months Around the strong 2010 Haiti Earthquake;Athanasiou;Nat. Hazards Earth Syst. Sci.,2011

3. Self-organized Criticality: An Explanation of the 1/fnoise;Bak;Phys. Rev. Lett.,1987

4. Machine Learning for Data-Driven Discovery in Solid Earth Geoscience;Bergen;Science,2019

5. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures;Bergstra,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3