Pre-Earthquake and Coseismic Ionosphere Disturbances of the Mw 6.6 Lushan Earthquake on 20 April 2013 Monitored by CMONOC

Author:

Shi ,Liu ,Guo ORCID,Liu ,You ,Wang

Abstract

In order to study the coupling relationship between large earthquakes and the ionosphere, the techniques of ionosphere data acquisition were refined by the Crustal Movement Observation Network of China (CMONOC) to detect the pre-earthquake ionospheric abnormal and coseismic ionospheric disturbances (CID) of the Mw 6.6 Lushan earthquake on 20 April 2013. Based on the regional ionosphere maps (RIMs) derived from the Global Positioning System (GPS) observations of CMONOC, the ionospheric local effects near the epicenter of the Lushan earthquake one month prior to the shock were analyzed. The results show that the total electron content (TEC) anomalies appeared 12–14 (6–8 April), 19 (1 April), and 25–27 (24–26 March) days prior to the Lushan earthquake, which are defined as periods 1, 2, and 3, respectively. Multi-indices including the ring current index (Dst), geomagnetic planetary (Kp) index, wind plasma speed (Vsw) index, F10.7, and solar flares were utilized to represent the solar–terrestrial environment in different scales and eliminate the effects of solar and geomagnetic activities on the ionosphere. After the interference of solar–terrestrial activity and the diurnal variation in the lower thermosphere were excluded, the TEC variations with obvious equatorial ionospheric anomaly (EIA) in period-1 were considered to be related to the Lushan earthquake. We further retrieved precise slant TECs (STECs) near the epicenter to study the coseismic ionospheric disturbance (CID). The results show that there was clear STEC disturbance occurring within half an hour after the Lushan earthquake, and the CID propagation distance was less than the impact radius of the Lushan earthquake (689 km). The shell models with different altitudes were adopted to analyze the propagation speed of the CID. It is found that at the F2-layer with the altitude of 277 km, which had a CID horizontal propagation velocity of 0.84 ± 0.03 km/s, was in accordance with the acoustic wave propagation velocity. The calculated velocity acoustic wave from the epicenter to the ionospheric pierce points of this shell model was about 0.53 ± 0.03km/s, which was also consistent with its actual velocity within the altitude of 0–277 km. Affected by the geomagnetic field, the CID mainly propagated along the southeast direction at the azimuth of 190°, which was almost parallel to the local magnetic line.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

The SDUST Research Fund

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3