Research on Prediction Method of Bolt Tightening for Aviation Components Based on Neural Network

Author:

Liu Songkai12,Chu Jinkui1ORCID,Wang Yuanyu12

Affiliation:

1. School of Mechanical Engineering, Dalian University of Technology, Dalian 116023, China

2. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

Abstract

Aviation components play an important role in national defense and aviation development. Bolt connections are widely used in the assembly of aviation components, due to their simple structure and convenient disassembly. In addition to the impact of elastic interaction, the gap between the tightened parts also makes it very difficult to obtain a uniform bolt load, to achieve the required tightness during the tightening process. However, the impact of elastic interaction can be reduced by selecting the best tightening sequence, and the optimal tightening sequence of aviation components under different gaps can be predicted by constructing a neural network surrogate model. Based on the predicted optimal sequence, the elastic interaction matrix corresponding to the sequence can be obtained. In order to obtain a uniform preload, the initial load of each bolt is calculated according to an elastic interaction matrix. This research has improved the tightness of aviation components and the real-life efficiency of tightening process planning.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3