Jet Engine Turbine Mechanical Properties Prediction by Using Progressive Numerical Methods

Author:

Spodniak Miroslav1ORCID,Hovanec Michal1ORCID,Korba Peter1ORCID

Affiliation:

1. Faculty of Aeronautics, Technical University of Košice, Rampová 7, 04 121 Košice, Slovakia

Abstract

The propulsion system for an aircraft is one of its most crucial systems; therefore, its reliable work must be ensured during all operational conditions and regimes. Modern materials, techniques and methods are used to ensure this goal; however, there is still room for improvement of this complex system. The proposed manuscript describes a progressive approach for the mechanical properties prediction of the turbine section during jet engine operation using an artificial neural network, and it illustrates its application on a small experimental jet engine. The mechanical properties are predicted based on the measured temperature, pressure and rpm during the jet engine operation, and targets for the artificial neural network are finite element analyses results. The artificial neural network (ANN) is trained using training data from the experimental measurements (temperatures, pressure and rpm) and the results from finite element analyses of the small experimental engine turbine section proposed in the paper. The predicted mechanical stress by ANN achieved high accuracy in comparison to the finite element analyses results, with an error of 1.38% for predicted mechanical stress and correlation coefficients higher than 0.99. Mechanical stress and deformation prediction of the turbine section is a time-consuming process when the finite element method is employed; however, the method with artificial neural network application presented in this paper decreased the solving time significantly. Mechanical structural analyses performed in ANSYS software using finite element modeling take around 30–40 min for one load step. In contrast, the artificial neural network presented in this paper predicts the stress and deformation for one load step in less than 0.00000044 s.

Funder

Slovak Research and Development Agency

Innovative measurement of airspeed of unconventional flying vehicles

Research of an intelligent management logistics system with a focus on monitoring the hygienic safety of the logistics chain

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3