Vehicle Classification Algorithm Based on Improved Vision Transformer

Author:

Dong Xinlong1ORCID,Shi Peicheng1,Tang Yueyue1,Yang Li1,Yang Aixi2ORCID,Liang Taonian3

Affiliation:

1. School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, China

2. Polytechnic Institute, Zhejiang University, Hangzhou 310015, China

3. Chery New Energy Automobile Co., Ltd., Wuhu 241000, China

Abstract

Vehicle classification technology is one of the foundations in the field of automatic driving. With the development of deep learning technology, visual transformer structures based on attention mechanisms can represent global information quickly and effectively. However, due to direct image segmentation, local feature details and information will be lost. To solve this problem, we propose an improved vision transformer vehicle classification network (IND-ViT). Specifically, we first design a CNN-In D branch module to extract local features before image segmentation to make up for the loss of detail information in the vision transformer. Then, in order to solve the problem of misdetection caused by the large similarity of some vehicles, we propose a sparse attention module, which can screen out the discernible regions in the image and further improve the detailed feature representation ability of the model. Finally, this paper uses the contrast loss function to further increase the intra-class consistency and inter-class difference of classification features and improve the accuracy of vehicle classification recognition. Experimental results show that the accuracy of the proposed model on the datasets of vehicle classification BIT-Vehicles, CIFAR-10, Oxford Flower-102, and Caltech-101 is higher than that of the original vision transformer model. Respectively, it increased by 1.3%, 1.21%, 7.54%, and 3.60%; at the same time, it also met a certain real-time requirement to achieve a balance of accuracy and real time.

Funder

Yangtze River Delta Science and Technology Innovation Community Joint Research Project

Natural Science Foundation of Anhui Province

Anhui Provincial Key Research and Development Plan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3