Enhanced Object Detection in Autonomous Vehicles through LiDAR—Camera Sensor Fusion

Author:

Dai Zhongmou12,Guan Zhiwei13,Chen Qiang1,Xu Yi45,Sun Fengyi1

Affiliation:

1. School of Automobile and Transportation, Tianjin University of Technology and Education, Tianjin 300222, China

2. Shandong Transport Vocational College, Weifang 261206, China

3. School of Automobile and Rail Transportation, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China

4. National & Local Joint Engineering Research Center for Intelligent Vehicle Road Collaboration and Safety Technology, Tianjin 300222, China

5. QINGTE GROUP Co., Ltd., Qingdao 266106, China

Abstract

To realize accurate environment perception, which is the technological key to enabling autonomous vehicles to interact with their external environments, it is primarily necessary to solve the issues of object detection and tracking in the vehicle-movement process. Multi-sensor fusion has become an essential process in efforts to overcome the shortcomings of individual sensor types and improve the efficiency and reliability of autonomous vehicles. This paper puts forward moving object detection and tracking methods based on LiDAR—camera fusion. Operating based on the calibration of the camera and LiDAR technology, this paper uses YOLO and PointPillars network models to perform object detection based on image and point cloud data. Then, a target box intersection-over-union (IoU) matching strategy, based on center-point distance probability and the improved Dempster–Shafer (D–S) theory, is used to perform class confidence fusion to obtain the final fusion detection result. In the process of moving object tracking, the DeepSORT algorithm is improved to address the issue of identity switching resulting from dynamic objects re-emerging after occlusion. An unscented Kalman filter is utilized to accurately predict the motion state of nonlinear objects, and object motion information is added to the IoU matching module to improve the matching accuracy in the data association process. Through self-collected data verification, the performances of fusion detection and tracking are judged to be significantly better than those of a single sensor. The evaluation indexes of the improved DeepSORT algorithm are 66% for MOTA and 79% for MOTP, which are, respectively, 10% and 5% higher than those of the original DeepSORT algorithm. The improved DeepSORT algorithm effectively solves the problem of tracking instability caused by the occlusion of moving objects.

Funder

Science and Technology Project of Tianjin Education Committee

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3