Manipulation-Compliant Artificial Potential Field and Deep Q-Network: Large Ships Path Planning Based on Deep Reinforcement Learning and Artificial Potential Field

Author:

Xu Weifeng1ORCID,Zhu Xiang1ORCID,Gao Xiaori2,Li Xiaoyong1ORCID,Cao Jianping1,Ren Xiaoli1,Shao Chengcheng1

Affiliation:

1. College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China

2. Navigation College, Dalian Maritime University, Dalian 116026, China

Abstract

Enhancing the path planning capabilities of ships is crucial for ensuring navigation safety, saving time, and reducing energy consumption in complex maritime environments. Traditional methods, reliant on static algorithms and singular models, are frequently limited by the physical constraints of ships, such as turning radius, and struggle to adapt to the maritime environment’s variability and emergencies. The development of reinforcement learning has introduced new methods and perspectives to path planning by addressing complex environments, achieving multi-objective optimization, and enhancing autonomous learning and adaptability, significantly improving the performance and application scope. In this study, we introduce a two-stage path planning approach for large ships named MAPF–DQN, combining Manipulation-Compliant Artificial Potential Field (MAPF) with Deep Q-Network (DQN). In the first stage, we improve the reward function in DQN by integrating the artificial potential field method and use a time-varying greedy algorithm to search for paths. In the second stage, we use the nonlinear Nomoto model for path smoothing to enhance maneuverability. To validate the performance and effectiveness of the algorithm, we conducted extensive experiments using the model of “Yupeng” ship. Case studies and experimental results demonstrate that the MAPF–DQN algorithm can find paths that closely match the actual trajectory under normal environmental conditions and U-shaped obstacles. In summary, the MAPF–DQN algorithm not only enhances the efficiency of path planning for large ships, but also finds relatively safe and maneuverable routes, which are of great significance for maritime activities.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Program of Hunan Province

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3