Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm

Author:

Luan FeiORCID,Cai Zongyan,Wu Shuqiang,Liu Shi Qiang,He Yixin

Abstract

The flexible job shop scheduling problem (FJSP) is a difficult discrete combinatorial optimization problem, which has been widely studied due to its theoretical and practical significance. However, previous researchers mostly emphasized on the production efficiency criteria such as completion time, workload, flow time, etc. Recently, with considerations of sustainable development, low-carbon scheduling problems have received more and more attention. In this paper, a low-carbon FJSP model is proposed to minimize the sum of completion time cost and energy consumption cost in the workshop. A new bio-inspired metaheuristic algorithm called discrete whale optimization algorithm (DWOA) is developed to solve the problem efficiently. In the proposed DWOA, an innovative encoding mechanism is employed to represent two sub-problems: Machine assignment and job sequencing. Then, a hybrid variable neighborhood search method is adapted to generate a high quality and diverse population. According to the discrete characteristics of the problem, the modified updating approaches based on the crossover operator are applied to replace the original updating method in the exploration and exploitation phase. Simultaneously, in order to balance the ability of exploration and exploitation in the process of evolution, six adjustment curves of a are used to adjust the transition between exploration and exploitation of the algorithm. Finally, some well-known benchmark instances are tested to verify the effectiveness of the proposed algorithms for the low-carbon FJSP.

Funder

National Natural Science Foundation of China

the Project of Xi'an Science and Technology Innovation Guidance Program

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3