Parallel Disassembly Sequence Planning Using a Discrete Whale Optimization Algorithm for Equipment Maintenance in Hydropower Station

Author:

Zhong Ziwei12,Zhu Lingkai12,Fu Wenlong3ORCID,Qin Jiafeng12,Zhao Mingzhe12,A Rixi3

Affiliation:

1. State Grid Shandong Electric Power Research Institute, Jinan 250003, China

2. Shandong Smart Grid Technology Innovation Center, Jinan 250003, China

3. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China

Abstract

In a hydropower station, equipment needs maintenance to ensure safe, stable, and efficient operation. And the essence of equipment maintenance is a disassembly sequence planning problem. However, the complexity arises from the vast number of components in a hydropower station, leading to a significant proliferation of potential combinations, which poses considerable challenges when devising optimal solutions for the maintenance process. Consequently, to improve maintenance efficiency and decrease maintenance time, a discrete whale optimization algorithm (DWOA) is proposed in this paper to achieve excellent parallel disassembly sequence planning (PDSP). To begin, composite nodes are added into the constraint relationship graph based on the characteristics of hydropower equipment, and disassembly time is chosen as the optimization objective. Subsequently, the DWOA is proposed to solve the PDSP problem by integrating the precedence preservative crossover mechanism, heuristic mutation mechanism, and repetitive pairwise exchange operator. Meanwhile, the hierarchical combination method is used to swiftly generate the initial population. To verify the viability of the proposed algorithm, a classic genetic algorithm (GA), simplified teaching–learning-based optimization (STLBO), and self-adaptive simplified swarm optimization (SSO) were employed for comparison in three maintenance projects. The experimental results and comparative analysis revealed that the proposed PDSP with DWOA achieved a reduced disassembly time of only 19.96 min in Experiment 3. Additionally, the values for standard deviation, average disassembly time, and the rate of minimum disassembly time were 0.3282, 20.31, and 71%, respectively, demonstrating its superior performance compared to the other algorithms. Furthermore, the method proposed in this paper addresses the inefficiencies in dismantling processes in hydropower stations and enhances visual representation for maintenance training by integrating Unity3D with intelligent algorithms.

Funder

State Grid Shandong Electric Power Research Institute Independent Research Project "Research on Remote State Assessment and Support Power Grid Capability of Pumped Storage Power Station"

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3