Exploring Changes in Land Surface Temperature Possibly Associated with Earthquake: Case of the April 2015 Nepal Mw 7.9 Earthquake

Author:

Chen ShunyunORCID,Liu Peixun,Feng Tao,Wang Dong,Jiao ZhonghuORCID,Chen Lichun,Xu Zhengxuan,Zhang Guangze

Abstract

Satellite thermal infrared remote sensing has received worldwide attention in the exploration for earthquake precursors; however, this method faces great controversy. Obtaining repeatable phenomena related to earthquakes is helpful to reduce this controversy. In this paper, a total of 15 or 17 years of Moderate-resolution Imaging Spectroradiometer (MODIS)/Aqua and MODIS/Terra satellite remote sensing land surface temperature (LST) products is selected to analyze the temperature changes before and after the Mw 7.9 earthquake in Nepal on 25 April 2015 and to explore possible thermal information associated with this earthquake. Major findings are given as follows: (1) from the time course, the temperature slowly cooled before the earthquake, reached a minimum at the time of the earthquake, and returned to normal after the earthquake. Since these changes were initiated before the earthquake, they may even have been precursors to the Nepal earthquake. (2) From the space distribution, the cooling areas correspond to the seismogenic structure during the earthquake. These cooling areas are distributed along the Himalayas and are approximately 1300 km long. The widths of the East and West sides are slightly different, with an average temperature decrease of 5.6 °C. For these cooling areas, the Western section is approximately 90 km wide and 500 km long; the East side is approximately 190 km wide and 800 km long. The Western side of the cooling strips appeared before the earthquake. In short, these kinds of spatial and temporal changes are tectonically related to the earthquake and may have been caused by the tectonic activity associated with the Nepal earthquake. This process began before the earthquake and therefore might even be potentially premonitory information associated with the Nepal earthquake.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3