A Complexity View into the Physics of the Accelerating Seismic Release Hypothesis: Theoretical Principles

Author:

Vallianatos Filippos,Chatzopoulos Georgios

Abstract

Observational indications support the hypothesis that many large earthquakes are preceded by accelerating-decelerating seismic release rates which are described by a power law time to failure relation. In the present work, a unified theoretical framework is discussed based on the ideas of non-extensive statistical physics along with fundamental principles of physics such as the energy conservation in a faulted crustal volume undergoing stress loading. We define a generalized Benioff strain function Ω ξ ( t ) = ∑ i = 1 n ( t ) E i ξ ( t ) , where Ei is the earthquake energy, 0 ≤ ξ ≤ 1 . and a time-to-failure power-law of Ω ξ ( t ) derived for a fault system that obeys a hierarchical distribution law extracted from Tsallis entropy. In the time-to-failure power-law followed by Ω ξ ( t ) the existence of a common exponent mξ which is a function of the non-extensive entropic parameter q is demonstrated. An analytic expression that connects mξ with the Tsallis entropic parameter q and the b value of Gutenberg—Richter law is derived. In addition the range of q and b values that could drive the system into an accelerating stage and to failure is discussed, along with precursory variations of mξ resulting from the precursory b-value anomaly. Finally our calculations based on Tsallis entropy and the energy conservation give a new view on the empirical laws derived in the literature, the associated average generalized Benioff strain rate during accelerating period with the background rate and connecting model parameters with the expected magnitude of the main shock.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference86 articles.

1. Critical Phenomena in Natural Sciences: Chaos, Fractals, Self organization and Disorder;Sornette,2004

2. Earthquakes as a self-organized critical phenomenon

3. Long term earthquake prediction in western Hellenic arc;Papadopoulos;Earthq. Pred. Res.,1986

4. An observational test of the critical earthquake concept

5. Predicting earthquakes by analyzing accelerating precursory seismic activity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3