Production of Sustainable and Biodegradable Polymers from Agricultural Waste

Author:

Maraveas ChrysanthosORCID

Abstract

Agro-wastes are derived from diverse sources including grape pomace, tomato pomace, pineapple, orange, and lemon peels, sugarcane bagasse, rice husks, wheat straw, and palm oil fibers, among other affordable and commonly available materials. The carbon-rich precursors are used in the production bio-based polymers through microbial, biopolymer blending, and chemical methods. The Food and Agriculture Organization (FAO) estimates that 20–30% of fruits and vegetables are discarded as waste during post-harvest handling. The development of bio-based polymers is essential, considering the scale of global environmental pollution that is directly linked to the production of synthetic plastics such as polypropylene (PP) and polyethylene (PET). Globally, 400 million tons of synthetic plastics are produced each year, and less than 9% are recycled. The optical, mechanical, and chemical properties such as ultraviolet (UV) absorbance, tensile strength, and water permeability are influenced by the synthetic route. The production of bio-based polymers from renewable sources and microbial synthesis are scalable, facile, and pose a minimal impact on the environment compared to chemical synthesis methods that rely on alkali and acid treatment or co-polymer blending. Despite the development of advanced synthetic methods and the application of biofilms in smart/intelligent food packaging, construction, exclusion nets, and medicine, commercial production is limited by cost, the economics of production, useful life, and biodegradation concerns, and the availability of adequate agro-wastes. New and cost-effective production techniques are critical to facilitate the commercial production of bio-based polymers and the replacement of synthetic polymers.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3