Adaptive Surrogate Estimation with Spatial Features Using a Deep Convolutional Autoencoder for CO2 Geological Sequestration

Author:

Jo Suryeom,Park ChanghyupORCID,Ryu Dong-Woo,Ahn SeonginORCID

Abstract

This paper develops a reliable deep-learning framework to extract latent features from spatial properties and investigates adaptive surrogate estimation to sequester CO2 into heterogeneous deep saline aquifers. Our deep-learning architecture includes a deep convolutional autoencoder (DCAE) and a fully-convolutional network to not only reduce computational costs but also to extract dimensionality-reduced features to conserve spatial characteristics. The workflow integrates two different spatial properties within a single convolutional system, and it also achieves accurate reconstruction performance. This approach significantly reduces the number of parameters to 4.3% of the original number required, e.g., the number of three-dimensional spatial properties needed decreases from 44,460 to 1920. The successful dimensionality reduction is accomplished by the DCAE system regarding all inputs as image channels from the initial stage of learning using the fully-convolutional network instead of fully-connected layers. The DCAE reconstructs spatial parameters such as permeability and porosity while conserving their statistical values, i.e., their mean and standard deviation, achieving R-squared values of over 0.972 with a mean absolute percentage error of their mean values of less than 1.79%. The adaptive surrogate model using the latent features extracted by DCAE, well operations, and modeling parameters is able to accurately estimate CO2 sequestration performances. The model shows R-squared values of over 0.892 for testing data not used in training and validation. The DCAE-based surrogate estimation exploits the reliable integration of various spatial data within the fully-convolutional network and allows us to evaluate flow behavior occurring in a subsurface domain.

Funder

National Research Foundation of Korea

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3