Restoration of Missing Pressures in a Gas Well Using Recurrent Neural Networks with Long Short-Term Memory Cells

Author:

Ki Seil,Jang IlsikORCID,Cha Booho,Seo Jeonggyu,Kwon Oukwang

Abstract

This study proposes a data-driven method based on recurrent neural networks (RNNs) with long short-term memory (LSTM) cells for restoring missing pressure data from a gas production well. Pressure data recorded by gauges installed at the bottom hole and wellhead of a production well often contain abnormal or missing values as a result of gauge malfunctions, noise, outliers, and operational instability. RNNs employing LSTM cells to prevent long-term memory loss have been widely used to predict time series data. In this study, an RNN with the LSTM method was used to restore abnormal or missing wellhead and bottom-hole pressures in three intervals within a production sequence of more than eight years in duration. The pressure restoration was performed using various input features for RNNs with LSTM models based on the characteristics of the available data. It was carried out through three sequential processes and the results were acceptable with a mean absolute percentage error no more than 5.18%. The reliability of the proposed method was verified through a comparison with the results of a physical model.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference30 articles.

1. Multi-Phase Flow Metering in Offshore Oil and Gas Transportation Pipelines: Trends and Perspectives

2. A review of hydrocarbon allocation methods in the upstream oil and gas industry

3. Intelligent Digital Oil and Gas Fields;Carvajal,2018

4. Data Analysis using Regression and Multilevel/Hierarchical Models;Gelman,2006

5. Understanding Machine Learning from Theory to Algorithms;Shalev-Shwartz,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3