Abstract
This study proposes a data-driven method based on recurrent neural networks (RNNs) with long short-term memory (LSTM) cells for restoring missing pressure data from a gas production well. Pressure data recorded by gauges installed at the bottom hole and wellhead of a production well often contain abnormal or missing values as a result of gauge malfunctions, noise, outliers, and operational instability. RNNs employing LSTM cells to prevent long-term memory loss have been widely used to predict time series data. In this study, an RNN with the LSTM method was used to restore abnormal or missing wellhead and bottom-hole pressures in three intervals within a production sequence of more than eight years in duration. The pressure restoration was performed using various input features for RNNs with LSTM models based on the characteristics of the available data. It was carried out through three sequential processes and the results were acceptable with a mean absolute percentage error no more than 5.18%. The reliability of the proposed method was verified through a comparison with the results of a physical model.
Funder
Ministry of Trade, Industry and Energy
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference30 articles.
1. Multi-Phase Flow Metering in Offshore Oil and Gas Transportation Pipelines: Trends and Perspectives
2. A review of hydrocarbon allocation methods in the upstream oil and gas industry
3. Intelligent Digital Oil and Gas Fields;Carvajal,2018
4. Data Analysis using Regression and Multilevel/Hierarchical Models;Gelman,2006
5. Understanding Machine Learning from Theory to Algorithms;Shalev-Shwartz,2014
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献