Surrogate Model with a Deep Neural Network to Evaluate Gas–Liquid Flow in a Horizontal Pipe

Author:

Seong Yongho,Park ChanghyupORCID,Choi Jinho,Jang Ilsik

Abstract

This study developed a data-driven surrogate model based on a deep neural network (DNN) to evaluate gas–liquid multiphase flow occurring in horizontal pipes. It estimated the liquid holdup and pressure gradient under a slip condition and different flow patterns, i.e., slug, annular, stratified flow, etc. The inputs of the surrogate modelling were related to the fluid properties and the dynamic data, e.g., superficial velocities at the inlet, while the outputs were the liquid holdup and pressure gradient observed at the outlet. The case study determined the optimal number of hidden neurons by considering the processing time and the validation error. A total of 350 experimental data were used: 279 for supervised training, 31 for validating the training performance, and 40 unknown data, not used in training and validation, were examined to forecast the liquid holdup and pressure gradient. The liquid holdups were estimated within less than 8.08% of the mean absolute percentage error, while the error of the pressure gradient was 23.76%. The R2 values confirmed the reliability of the developed model, showing 0.89 for liquid holdups and 0.98 for pressure gradients. The DNN-based surrogate model can be applicable to estimate liquid holdup and pressure gradients in a more realistic manner with a small amount of computating resources.

Funder

National Research Foundation of Korea

Kangwon National University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3