Salinity Moderated the Toxicity of Zinc Oxide Nanoparticles (ZnO NPs) towards the Early Development of Takifugu obscurus

Author:

Lin Yuqing123ORCID,Wang Jun1,Dai Huichao4,Mao Feijian1,Chen Qiuwen123,Yan Hanlu1,Chen Mo1

Affiliation:

1. Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China

2. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China

3. Yangtze Institute for Conservation and Green Development, Nanjing 210029, China

4. China Three Gorges Corporation, Wuhan 430010, China

Abstract

ZnO nanoparticles (ZnO NPs) have been applied in a wide range of fields due to their unique properties. However, their ecotoxicological threats are reorganized after being discharged. Their toxic effect on anadromous fish could be complicated due to the salinity fluctuations during migration between freshwater and brackish water. In this study, the combined impact of ZnO NPs and salinity on the early development of a typical anadromous fish, obscure puffer (Takifugu obscurus), was evaluated by (i) observation of the nanoparticle characterization in salt solution; (ii) quantification of the toxicity to embryos, newly hatched larvae, and larvae; and (iii) toxicological analysis using biomarkers. It is indicated that with increased salinity level in brackish water (10 ppt), the toxicity of ZnO NPs decreased due to reduced dissolved Zn2+ content, leading to higher hatch rate of embryos and survival rate of larvae than in freshwater (0 ppt). The irregular antioxidant enzyme activity changes are attributed to the toxic effects of nanoparticles on CAT (catalase), but further determination is required. The results of present study have the significance to guide the wildlife conservation of Takifugu obscurus population.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Postdoctoral Research Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3